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Abstract 
 
This study explores a dynamical model called the totally asymmetric simple exclusion process (TASEP) in two 
dimensions (2D). An open boundary condition is specified for the model, and sequential updating dynamics are used as 
the dynamical rule. The system studied is a discrete 2D system of lattice sites, which are modified into a three-way 
junction. Two cases are considered: a three-way junction with two entrances and one exit, and a three-way junction with 
one entrance and two exits. The density and current density of the system are determined numerically, such that a phase 
diagram is obtained. The continuity equation describing the dynamics of particles in the system is solved by using a 
simple Euler method. The results show that the density and current density profiles, as functions of the lattice sites, are 
determined by the input and output rates at their boundaries. Moreover, the density phases obtained are combinations of 
the density phases of the TASEP, which yield a rich phase diagram. 
 
 

Abstrak 
 
Diagram Fase dan Profil Rapat Arus Totally Asymmetric Simple Exclusion Process dalam Dua Dimensi untuk 
Sebuah Pertigaan Jalan yang Searah. Telah diteliti sebuah model dinamik yaitu the totally asymmetric simple 
exclusion process (TASEP) khususnya dalam dua dimensi (2D). Syarat batas yang digunakan untuk model ini adalah 
syarat batas terbuka. Aturan dinamika yang digunakan adalah aturan dinamika sequential updating. Sistem yang 
dipelajari adalah sebuah sistem diskrit berupa kekisi dalam dua dimensi. Sistem ini dimodifikasi menjadi bentuk 
pertigaan (junction) yang searah. Dua kasus yang dipelajari dalam penelitian ini adalah pertigaan dengan dua pintu 
masuk dan sebuah pintu keluar, dan pertigaan dengan satu pintu masuk dan dua pintu keluar. Nilai kerapatan dan rapat 
arus partikel dalam sistem tersebut ditentukan secara numerik sehingga dihasilkan diagram fase. Persamaan kontinuitas 
untuk menggambarkan dinamika partikel dalam sistem diselesaikan menggunakan metode Euler sederhana. Hasil 
numerik menunjukkan bahwa profil kerapatan dan rapat arus partikel dipengaruhi oleh syarat batas, yaitu laju masukan 
(input rate) dan laju luaran (output rate). Selain itu, fase kerapatan yang diperoleh merupakan kombinasi dari fase 
kerapatan untuk TASEP sehingga dihasilkan diagram fase yang kaya akan fase kerapatan.  
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1. Introduction  
 
A popular particle hopping model that has become a 
reference model for studying non-equilibrium-driven 
systems [1,2] is the totally asymmetric simple exclusion 
process (TASEP) [3,4]. TASEP is a driven system in 
which particles occupying one-dimensional lattice sites 
jump to their nearest right-hand neighbor site, provided  
 

 
that there is no other particle occupying that site. The 
jump occurs in to the right only. This model was 
originally applied to study the polymerization kinetics 
of nucleic acid templates [5,6]. Since then, it has been 
used as a standard tool for studying one-dimensional 
transports [7-9] and the biological motions of motor 
proteins [10].  
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The TASEP is specified by a dynamical rule and 
boundary conditions [11,12]. The boundary condition 
used is that of open boundaries. Under this condition, 
each boundary in the lattice system is given a reservoir 
that acts as an entrance for particles, as well as another 
reservoir that acts as an exit. Particles may only enter 
and go out of the lattice sites through the entrance and 
exit, respectively. This type of boundary condition 
produces interesting phases, which show the in-
homogeneity of the particle density profiles.  
 
The dynamical rule applied in this study is called 
sequential updating. For lattice systems, the dynamical 
rule prescribes the movement of particles from one site 
to another on a lattice. The jumping process is specified 
by a quantity called the hopping rate, expressed as 
ki(i+1)(t). ki(i+1)(t) is the probability of a particle jumping 
from lattice site i to site i+1 at time t. An example of the 
sequential updating dynamics can be observed in Figure 
1. 
 
As depicted in Figure 1, at time t, a site is chosen 
randomly with the probability 1/(N+1), where N is the 
total number of lattice sites. In this case site i = 4 is 
chosen, but there is already a particle at the site. 
 

 
 

Figure 1.  An Example of the Sequential Updating Process 
of the TASEP (Taken from [12]) 

 

However, no particle occupies site i = 5. Therefore, at 
time t + 1, the particle at the chosen site may jump to 
site i = 5 at the hopping rate k. Next, at time t + 1, 
another site is chosen, e.g. site N – 2, which is occupied 
by a particle. However, because there is a particle at site 
N - 1, no jump occurs at time t + 2. These dynamics 
continue as time progresses. 
 
There are two physical quantities that are discussed in 
this study: density [ρi(t)] and current density [Ji(i+1)(t)]. 
ρi(t) is the average ensemble of particles that occupy a 
lattice site i at time t. Ji(i+1)(t) is the average amount of 
jumping by particles from lattice site i to site (i+1) at 
time t. The relationship between the density and the 
current density is given by the continuity equation, viz.: 
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For the TASEP, we can use the simple Euler method 

( ) ( ) ( ) ( ) ( )tJtJ i-iii 111 −=⋅∇ ++iiJ , so that the formal 

solution of Eq. (1) can be written as follows: 
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As mentioned above, there are four phases of density for 
the TASEP that are of interest. These are low density 
(LD), high density (HD), coexistence phase (CP), and 
maximal current (MC). These four phases are shown in 
Figure 2. 
 
In Figure 2, α and β are the constant input (at the 
entrance) and output (at the exit) rates, respectively. The 
former is the probability rate of particles entering the 
lattice  sites  through  the  entrance, whereas  the latter is 
 

 
 

Figure 2.  The Phase Diagram of the TASEP, with Open 
Boundary Conditions and Sequential Updating 
Dynamics  
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the probability rate of particles exiting the lattice sites. 
The LD phase is obtained for α < β and α < 0.5. The HD 
phase is obtained for α > β and β < 0.5. The CP 
(diagonal line in Figure 2) between high and low 
densities is obtained for α = β and α, β < 0.5. Finally, 
the MC phase yields the maximum current density 
value, which is J = 0.25. This latter phase occurs if α, β 
≥ 0.5.  
 
An equally important but lesser-known model is the 
TASEP extended to two dimensions (2D) [13,14]. The 
spatial extension of the model is important in modeling 
various transport systems that occur in the real world, 
such as road traffic at junctions, where vehicles can be 
considered as interacting particles. The movement of 
particles is still asymmetric (i.e., the particles may only 
jump to the right or to the upper sites). In this study, two 
cases are considered, that is i) a junction with two inputs 
(entrances) and one output (exit), where the input rates 
of particles are α1 and α1, and the output rate is β1 
[Figure 3(i)], and ii) a junction with one input and two 
outputs [Figure 3(ii)], where the input rate is α1 and the 
output rates are β1 and β2. The values of these input and 
output rates will determine the density and current 
density of particles in each system case.  
 
The sequential update of the TASEP in 2D at each time 
step t → t + 1 (discrete time) can be described as 

follows. A lattice site ( ) 2Liiii yxyyxx ∈=+= ,êêi  is 

chosen randomly with probability 1/[N(N+2)], where L2 
is the 2D lattice system, N is the total number of lattice 
sites on the x- or y-axis, xê and yê are the unit vectors 

for the x- and y-axis, respectively. The current density 
of the TASEP in 2D can be written as [11, 15]: 
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and 
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where ( )( )tJ r
xêii +  is the current density of particles 

moving from site i to site ( )xêi + , ( )( )tJ u
yêii +  is the 

current density of particles moving from site i to site 

( )yêi + , ( )u
y

k êii +  is the hopping rate of particles from 

site i to site ( )yêi +  and ( )
r

x
k êii +  is the hopping rate of 

particles from site i to site ( )xêi + . 
 
To obtain the density profiles of the TASEP in 2D, a 
continuity equation similar to Eq. (1) is used, such that 
an analogy to Eq. (1) for the TASEP in 2D is in order. 
To create an analogy with Eq. (1) the evolution of 

particle density is obtained by using a continuity 
equation in 2D given as:  
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It can be observed that the density, ρ, assigns the same 
index i on the left- and right-hand sides of Eq. (5). 
Consequently, Eq. (5) is not a closed equation, and has 
to be solved self-consistently. The specifications of the 
input and output rates determine the density and current 
density profiles obtained. By using this model system, 
we can study a realistic system for vehicles at a three-
way junction.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

(i) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii) 
 
Figure 3.  The Dynamics of TASEP in 2D for a Three-way 

Junction with (i) two Entrances and One Exit, 
and (ii) One Entrance and Two Exits 
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2. Methods  
 
The instruments used in this research are (i) one (1) unit 
computer, (ii) Dev C++ software (language program), 
and (iii) MS Excel software. 

The data collected for this study were obtained by 
running a computer code and varying the parameters. 
The parameters which were varied are i) α1 = α2, β2 for 
the case of a junction with two inputs and one output, 
and ii) α1, β1 = β2 for the case of a junction with one 
input and two outputs. An additional constraint was also 
put forward, so that two of the input rates were the same 
and two of the output rates were the same, in case i) and 
case ii), respectively. This was done in order to reduce 
the number of parameters, so that the model would 
become simple and tractable. The input and output rates 
can be varied from 0.0 to 1.0.  
 
The hopping rates, kr and ku, were set as constant 
parameters. These were given values of 1.0, or kr = ku = 
1.0, for all lattice sites, except at the junction. This 
means that a particle on a site (except at the junction 
site) is certain to jump to the nearest right or higher 
neighbor site (probability of 1.0). A particle on the 
junction site can jump to the nearest right or higher 
neighbor with equal probability. As the probability is 
normalized, the hopping rate at the junction is set as kr = 
ku = 0.5.  
 
Finally, the values of the above mentioned parameters 
were inserted into equations (3), (4), and (5). The simple 
Euler method was then used to solve the differential 
equation (5) in the form of a computer code, via DEV 
C++. As Eq. (5) is a self-consistent equation, the main 
program code starts by providing a set of guess 
densities, ρ. The guess density set is then inserted into 
the right-hand side of Eq. (5), such that a new set of 
densities is obtained. The new set of densities is then 
inserted back into the right-hand side of Eq. (5), and so 
on, until the result converges to the true solution for the 

density. The current density profiles are obtained by 
inserting the true values of density into Eqs. (3) and (4).  
 
3. Results and Discussion 

 
The particle density for the TASEP in 2D in the form 
of a three-way junction has six kinds of phases, that is, 
high density-high density (HD-HD), coexistence phase-
high density (CP-HD), low density-coexistence phase 
(LD-CP), low density-low density (LD-LD), maximal 
current-low density (MC-LD), and high density-
maximal current (HD-MC). An example of a density 
profile for CP-HD is given in Figure 4 below. 
 
Figure 4 presents a density profile for a three-way 
junction with two input rates and one output rate, 
obtained for α1 = α2 = 0.1 and β2. From the beginning 
of the lattice sites (horizontal axis), the density is low, 
at about 0.1. However, at site 20, the density abruptly 
changes to a high density of 0.9. At the junction site 
(site 50), the density decreases slightly to 0.8, but is 
still in the high density region. Hence, the phase is a 
combination of a coexistence phase (from site 1 to 50) 
and a high density phase (from site 50 to 100) or CP-HD. 
 

 
 

 
Figure 4.  A Density Profile of the TASEP in 2D for a 

Three-way Junction with Two Entrances and 
One Exit, in the CP-HD Phase. The Horizontal 
Axis Presents the Lattice Sites from 1 to 100. 
The Vertical Axis is the Density with Numerical 
Values from 0.0 to 1.0 

 
 

Table 1. Various Phases of the TASEP with two Input Rates α1 = α2 and one Output Rate β2 
 

α1 
β2  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD 

0.2 CP-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD 

0.3 LD-CP HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD 

0.4 LD-LD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD 

0.5 LD-LD HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC 

0.6 LD-LD HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC 

0.7 LD-LD HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC 

0.8 LD-LD HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC 

0.9 LD-LD HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC 

1.0 LD-LD HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC HD-MC 
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Table 1 shows various density phases, which depend on 
the input rates α2 = α2 and output rate β2 from 0.1 to 1.0, 
or in other words, from HD-HD to LD-LD. For α2 = α1 
> 0.1 with output rate β2 variation from 0.1 to 1.0, a 
phase transition from HD-HD to HD-MC occurs. For α2 
= α1 = 0.1; β2 = 0.1, the HD-HD density phase occurs. 
For α2 = α1 = 0.1; β2 = 0.2, the CP-HD phase occurs. As 
the output rate is increased to β2 = 0.3, the LD-CP phase 
occurs. For β2 > 0.3, a transition to the LD-LD phase 
takes place. For α2 = α1 > 0.1; 0.1 < β2 < 0.5, the HD-
HD phase occurs. Finally, for α2 = α1 > 0.1; β2 ≥ 0.5, the 
density profile indicates the HD-MC phase.  
 
The next case involves a three-way junction of the 
TASEP in 2D with one entrance (one input rate) and 
two exits (two output rates). A phase diagram of various 
phases for this case, in which β1 = β2, can be seen in 
Table 2. Various phase transitions are evident in the 
table. The first phase is again LD-LD, when α1 = 0.1; β1 
= β2 = 0.1. If α1 is increased to 0.2, but β1, β2 remains 
fixed, the phase changes to LD-CP. Then, if α1 is 
increased to 0.3, the density phase of CP-HD is produced. 
If the input rate is in the range of 0.4 to 1.0, with β1 = β2 
= 0.1, the density reaches a high density phase, which is 
HD-HD. The high density phase can then be decreased 
by increasing the values of β1, β2. For 0.4 ≤ α1 ≤ 0.5, if 
β1 = β2 is increased, the LD-LD phase will be obtained. 
For 0.6 ≤ α1 ≤ 1.0, the density phase becomes MC-LD. 
According to these results, the LD-LD phase occurs if 
α1 = β1 = β2 = 0.1 and α1 ≤ 0.5, β1 = β2 ≥ 0.2. The LD-
CP phase then occurs if α1 = 0.2, β1 = β2 = 0.1. Next, the 
CP-HD phase occurs for α1 = 0.3, β1 = β2 = 0.1. The 
HD-HD phase occurs for α1 ≥ 0.4; β1 = β2 = 0.1. Finally, 
the MC-LD phase occurs for α1 ≥ 0.6, β1 = β2 ≥ 0.2.  
 
An example of a density profile for the three-way 
junction with one entrance and two exits is presented in 
Figure 5. The CP starts from the beginning of the lattice 
site and continues until the junction site. Then, from the 
junction site until both ends of the lattice sites, the HD 
phase occurs. As such, the combination of the phases is 

CP-HD. For this case, the input rate is 0.3, and the 
output rates are both 0.1. Without the junction (only one 
output rate), the phase would be HD. However, the 
additional lane (junction) reduces the high density 
profile of the first half of the lattice sites to CP. 
 
Some comparison between the two cases above is in 
order. In general, the density of particles in the three-
way junction with two entrances (two input rates) and 
one exit (one output rate) is higher than in the three-way 
junction with one entrance and two exits. This is in 
accordance with the boundary conditions enforced for 
the two cases above, where the former has more 
entrances and fewer exits than the latter. If the particles 
that move through the three-way junction are regarded 
as models of vehicles, this demonstrates that the 
vehicular traffic in a lane with two entrances and one 
exit will be at a high density for most given input and 
output rates. This can also be observed in Table 1. 
Likewise, if the three-way junction has one entrance and 
two exits, the vehicular traffic will be at a low density in 
the dominant scenario, which can be seen in Table 2. 
 

 
 

Figure 5. The Density Profile of the TASEP in 2D for a 
Three-way Junction with One Entrance and 
Two Exits in the CP-HD Phase. The Horizontal 
Axis Presents the Lattice Sites from 1 to 100. 
The Vertical Axis is the Density 

 

 

Table 2. Various Phases for a Three-way Junction with one Input rate (α1) and Two Output Rates (β1, β2) 
 

α1 
β1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 LD-LD LD-CP CP-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD HD-HD 

0.2 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.3 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.4 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.5 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.6 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.7 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.8 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 

0.9 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD   MC-LD MC-LD 

1.0 LD-LD LD-LD LD-LD LD-LD LD-LD MC-LD MC-LD MC-LD  MC-LD MC-LD 
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The computed results for the current density are in the 
form of graphs of current density vs. lattice sites. The 
current densities may be obtained by using Eq. (3) and 
Eq. (4), after Eq. (5) is solved numerically. As 
explained above, the current density describes the 
average hopping of particles through the three-way 
junction. An example of a current density profile is 
given in Figure 6. The figure shows a current density 
profile for α1 = 0.4; β1 = β2 = 0.1.  
 
Clearly, the current density profile of the three-way 
junction depends on α1, α2, β1, and β2. The profile is 
mainly flat throughout the lattice sites. This indicates 
that the value of the current density is constant. 
Furthermore, this shows that the three-way junction is in 
a steady state of non-equilibrium. However, the value of 
the current density from the beginning to the junction 
site is higher than for the rest of the lattice sites.  
 
Figure 7 depicts the current density profile of a three-
way  junction  for  α1= 0.3; β1 = β2 = 0.1. The  profile  is  
 

 
 

Figure 6. Current Density Profile with α1 = 0.4; β1 = β2 = 0.1 
 
 
 

 
Figure 7.  The Current Density Profile of the Three-way 

Junction with α1= 0.3; β1 = β2 = 0.1 

similar to the previous density profile, and is flat 
throughout the lattice sites. However, the value of the 
current density lowers from the beginning to the end of 
the lattice sites. 
 
4. Conclusions 
 
Based on the results and discussion above, the findings 
of this study can be summarized as follows. The two 
cases of the three-way junction of the TASEP in two 
dimensions produce various phases, which are HD-HD, 
CP-HD, LD-CP, LD-LD, and HD-MC. The MC-LD 
phase especially occurs for the three-way junction with 
one input and two outputs. 
 
In general, the density profile of the three-way junction 
with two inputs and one output is higher than that of the 
three-way junction with one input and two outputs. The 
current density profiles are determined by the 
specifications of α1, α2, β1, and β2. The value of the 
current density is constant, which shows that the 
systems are in steady non-equilibrium states. 
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